Grade 20 Titanium vs. C72800 Copper-nickel
Grade 20 titanium belongs to the titanium alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.
For each property being compared, the top bar is grade 20 titanium and the bottom bar is C72800 copper-nickel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 120 | |
120 |
Elongation at Break, % | 5.7 to 17 | |
3.9 to 23 |
Poisson's Ratio | 0.32 | |
0.34 |
Shear Modulus, GPa | 47 | |
44 |
Shear Strength, MPa | 560 to 740 | |
330 to 740 |
Tensile Strength: Ultimate (UTS), MPa | 900 to 1270 | |
520 to 1270 |
Tensile Strength: Yield (Proof), MPa | 850 to 1190 | |
250 to 1210 |
Thermal Properties
Latent Heat of Fusion, J/g | 400 | |
210 |
Maximum Temperature: Mechanical, °C | 370 | |
200 |
Melting Completion (Liquidus), °C | 1660 | |
1080 |
Melting Onset (Solidus), °C | 1600 | |
920 |
Specific Heat Capacity, J/kg-K | 520 | |
380 |
Thermal Expansion, µm/m-K | 9.6 | |
17 |
Otherwise Unclassified Properties
Density, g/cm3 | 5.0 | |
8.8 |
Embodied Carbon, kg CO2/kg material | 52 | |
4.4 |
Embodied Energy, MJ/kg | 860 | |
68 |
Embodied Water, L/kg | 350 | |
360 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 71 to 150 | |
37 to 99 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 2940 to 5760 | |
260 to 5650 |
Stiffness to Weight: Axial, points | 14 | |
7.4 |
Stiffness to Weight: Bending, points | 33 | |
19 |
Strength to Weight: Axial, points | 50 to 70 | |
17 to 40 |
Strength to Weight: Bending, points | 41 to 52 | |
16 to 30 |
Thermal Shock Resistance, points | 55 to 77 | |
19 to 45 |
Alloy Composition
Aluminum (Al), % | 3.0 to 4.0 | |
0 to 0.1 |
Antimony (Sb), % | 0 | |
0 to 0.020 |
Bismuth (Bi), % | 0 | |
0 to 0.0010 |
Boron (B), % | 0 | |
0 to 0.0010 |
Carbon (C), % | 0 to 0.050 | |
0 |
Chromium (Cr), % | 5.5 to 6.5 | |
0 |
Copper (Cu), % | 0 | |
78.3 to 82.8 |
Hydrogen (H), % | 0 to 0.020 | |
0 |
Iron (Fe), % | 0 to 0.3 | |
0 to 0.5 |
Lead (Pb), % | 0 | |
0 to 0.0050 |
Magnesium (Mg), % | 0 | |
0.0050 to 0.15 |
Manganese (Mn), % | 0 | |
0.050 to 0.3 |
Molybdenum (Mo), % | 3.5 to 4.5 | |
0 |
Nickel (Ni), % | 0 | |
9.5 to 10.5 |
Niobium (Nb), % | 0 | |
0.1 to 0.3 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.12 | |
0 |
Palladium (Pd), % | 0.040 to 0.080 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.0050 |
Silicon (Si), % | 0 | |
0 to 0.050 |
Sulfur (S), % | 0 | |
0 to 0.0025 |
Tin (Sn), % | 0 | |
7.5 to 8.5 |
Titanium (Ti), % | 71 to 77 | |
0 to 0.010 |
Vanadium (V), % | 7.5 to 8.5 | |
0 |
Zinc (Zn), % | 0 | |
0 to 1.0 |
Zirconium (Zr), % | 3.5 to 4.5 | |
0 |
Residuals, % | 0 | |
0 to 0.3 |