MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. N08024 Nickel

Grade 20 titanium belongs to the titanium alloys classification, while N08024 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.7 to 17
34
Fatigue Strength, MPa 550 to 630
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
79
Shear Strength, MPa 560 to 740
410
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
620
Tensile Strength: Yield (Proof), MPa 850 to 1190
270

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 370
990
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1600
1380
Specific Heat Capacity, J/kg-K 520
460
Thermal Expansion, µm/m-K 9.6
15

Otherwise Unclassified Properties

Density, g/cm3 5.0
8.2
Embodied Carbon, kg CO2/kg material 52
7.2
Embodied Energy, MJ/kg 860
99
Embodied Water, L/kg 350
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 50 to 70
21
Strength to Weight: Bending, points 41 to 52
20
Thermal Shock Resistance, points 55 to 77
15

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 5.5 to 6.5
22.5 to 25
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
26.6 to 38.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
3.5 to 5.0
Nickel (Ni), % 0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0