MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. S44627 Stainless Steel

Grade 20 titanium belongs to the titanium alloys classification, while S44627 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.7 to 17
24
Fatigue Strength, MPa 550 to 630
200
Poisson's Ratio 0.32
0.27
Reduction in Area, % 23
51
Shear Modulus, GPa 47
80
Shear Strength, MPa 560 to 740
310
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
490
Tensile Strength: Yield (Proof), MPa 850 to 1190
300

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 370
1100
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1600
1400
Specific Heat Capacity, J/kg-K 520
480
Thermal Expansion, µm/m-K 9.6
11

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.7
Embodied Carbon, kg CO2/kg material 52
2.9
Embodied Energy, MJ/kg 860
41
Embodied Water, L/kg 350
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
100
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
220
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 50 to 70
18
Strength to Weight: Bending, points 41 to 52
18
Thermal Shock Resistance, points 55 to 77
16

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.010
Chromium (Cr), % 5.5 to 6.5
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
69.2 to 74.2
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 3.5 to 4.5
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0 to 0.030
0 to 0.015
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0