MakeItFrom.com
Menu (ESC)

Grade 200 Maraging Steel vs. EN AC-43500 Aluminum

Grade 200 maraging steel belongs to the iron alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 200 maraging steel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 9.1 to 18
4.5 to 13
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 970 to 1500
220 to 300
Tensile Strength: Yield (Proof), MPa 690 to 1490
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 260
550
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 4.5
7.8
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1240 to 5740
130 to 200
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 33 to 51
24 to 33
Strength to Weight: Bending, points 27 to 35
32 to 39
Thermal Shock Resistance, points 29 to 45
10 to 14

Alloy Composition

Aluminum (Al), % 0.050 to 0.15
86.4 to 90.5
Boron (B), % 0 to 0.0030
0
Calcium (Ca), % 0 to 0.050
0
Carbon (C), % 0 to 0.030
0
Cobalt (Co), % 8.0 to 9.0
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 67.8 to 71.8
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0 to 0.1
0.4 to 0.8
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 17 to 19
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
9.0 to 11.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.15 to 0.25
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Zirconium (Zr), % 0 to 0.020
0
Residuals, % 0
0 to 0.15