MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. ASTM A182 Grade F22V

Grade 21 titanium belongs to the titanium alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 9.0 to 17
21
Fatigue Strength, MPa 550 to 660
320
Poisson's Ratio 0.32
0.29
Reduction in Area, % 22
50
Shear Modulus, GPa 51
74
Shear Strength, MPa 550 to 790
420
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
670
Tensile Strength: Yield (Proof), MPa 870 to 1170
460

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 310
460
Melting Completion (Liquidus), °C 1740
1470
Melting Onset (Solidus), °C 1690
1430
Specific Heat Capacity, J/kg-K 500
470
Thermal Conductivity, W/m-K 7.5
39
Thermal Expansion, µm/m-K 7.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
4.2
Density, g/cm3 5.4
7.9
Embodied Carbon, kg CO2/kg material 32
2.5
Embodied Energy, MJ/kg 490
35
Embodied Water, L/kg 180
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 46 to 69
24
Strength to Weight: Bending, points 38 to 50
22
Thermal Diffusivity, mm2/s 2.8
11
Thermal Shock Resistance, points 66 to 100
19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0 to 0.050
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
94.6 to 96.4
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 14 to 16
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 2.2 to 3.2
0 to 0.070
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.15 to 0.25
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 76 to 81.2
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Residuals, % 0 to 0.4
0