Grade 21 Titanium vs. ASTM A225 Steel
Grade 21 titanium belongs to the titanium alloys classification, while ASTM A225 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is grade 21 titanium and the bottom bar is ASTM A225 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 140 | |
190 |
Elongation at Break, % | 9.0 to 17 | |
21 to 23 |
Fatigue Strength, MPa | 550 to 660 | |
330 to 390 |
Poisson's Ratio | 0.32 | |
0.29 |
Shear Modulus, GPa | 51 | |
73 |
Shear Strength, MPa | 550 to 790 | |
390 to 520 |
Tensile Strength: Ultimate (UTS), MPa | 890 to 1340 | |
620 to 830 |
Tensile Strength: Yield (Proof), MPa | 870 to 1170 | |
460 to 550 |
Thermal Properties
Latent Heat of Fusion, J/g | 410 | |
250 |
Maximum Temperature: Mechanical, °C | 310 | |
400 |
Melting Completion (Liquidus), °C | 1740 | |
1460 |
Melting Onset (Solidus), °C | 1690 | |
1420 |
Specific Heat Capacity, J/kg-K | 500 | |
470 |
Thermal Conductivity, W/m-K | 7.5 | |
52 |
Thermal Expansion, µm/m-K | 7.1 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 60 | |
2.3 |
Density, g/cm3 | 5.4 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 32 | |
1.8 |
Embodied Energy, MJ/kg | 490 | |
24 to 25 |
Embodied Water, L/kg | 180 | |
48 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 180 | |
120 to 170 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 2760 to 5010 | |
580 to 820 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 32 | |
24 |
Strength to Weight: Axial, points | 46 to 69 | |
22 to 29 |
Strength to Weight: Bending, points | 38 to 50 | |
21 to 25 |
Thermal Diffusivity, mm2/s | 2.8 | |
14 |
Thermal Shock Resistance, points | 66 to 100 | |
18 to 24 |