MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. EN 1.7233 Steel

Grade 21 titanium belongs to the titanium alloys classification, while EN 1.7233 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 9.0 to 17
18 to 23
Fatigue Strength, MPa 550 to 660
270 to 530
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 51
73
Shear Strength, MPa 550 to 790
450 to 590
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
700 to 960
Tensile Strength: Yield (Proof), MPa 870 to 1170
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 310
430
Melting Completion (Liquidus), °C 1740
1460
Melting Onset (Solidus), °C 1690
1420
Specific Heat Capacity, J/kg-K 500
470
Thermal Conductivity, W/m-K 7.5
39
Thermal Expansion, µm/m-K 7.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
3.0
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 32
1.6
Embodied Energy, MJ/kg 490
21
Embodied Water, L/kg 180
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
380 to 1630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 46 to 69
25 to 34
Strength to Weight: Bending, points 38 to 50
22 to 28
Thermal Diffusivity, mm2/s 2.8
11
Thermal Shock Resistance, points 66 to 100
21 to 28

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0.39 to 0.45
Chromium (Cr), % 0
1.2 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
96.2 to 97.5
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 14 to 16
0.5 to 0.7
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.15 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 76 to 81.2
0
Residuals, % 0 to 0.4
0

Comparable Variants