MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. N06250 Nickel

Grade 21 titanium belongs to the titanium alloys classification, while N06250 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is N06250 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 9.0 to 17
46
Fatigue Strength, MPa 550 to 660
230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 51
82
Shear Strength, MPa 550 to 790
500
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
710
Tensile Strength: Yield (Proof), MPa 870 to 1170
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 310
980
Melting Completion (Liquidus), °C 1740
1490
Melting Onset (Solidus), °C 1690
1440
Specific Heat Capacity, J/kg-K 500
440
Thermal Expansion, µm/m-K 7.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
55
Density, g/cm3 5.4
8.6
Embodied Carbon, kg CO2/kg material 32
10
Embodied Energy, MJ/kg 490
140
Embodied Water, L/kg 180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
260
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
23
Strength to Weight: Axial, points 46 to 69
23
Strength to Weight: Bending, points 38 to 50
21
Thermal Shock Resistance, points 66 to 100
19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.020
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0
0.25 to 1.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
7.4 to 19.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 14 to 16
10.1 to 12
Nickel (Ni), % 0
50 to 54
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.15 to 0.25
0 to 0.090
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 76 to 81.2
0
Tungsten (W), % 0
0.25 to 1.3
Residuals, % 0 to 0.4
0