MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. N08120 Nickel

Grade 21 titanium belongs to the titanium alloys classification, while N08120 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 9.0 to 17
34
Fatigue Strength, MPa 550 to 660
230
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 51
79
Shear Strength, MPa 550 to 790
470
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
700
Tensile Strength: Yield (Proof), MPa 870 to 1170
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 310
1000
Melting Completion (Liquidus), °C 1740
1420
Melting Onset (Solidus), °C 1690
1370
Specific Heat Capacity, J/kg-K 500
470
Thermal Conductivity, W/m-K 7.5
11
Thermal Expansion, µm/m-K 7.1
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
45
Density, g/cm3 5.4
8.2
Embodied Carbon, kg CO2/kg material 32
7.2
Embodied Energy, MJ/kg 490
100
Embodied Water, L/kg 180
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
190
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 46 to 69
24
Strength to Weight: Bending, points 38 to 50
21
Thermal Diffusivity, mm2/s 2.8
3.0
Thermal Shock Resistance, points 66 to 100
17

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.050
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
21 to 41.4
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 14 to 16
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 2.2 to 3.2
0.4 to 0.9
Nitrogen (N), % 0 to 0.030
0.15 to 0.3
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.15 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 76 to 81.2
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Residuals, % 0 to 0.4
0