MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. N08810 Stainless Steel

Grade 21 titanium belongs to the titanium alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 9.0 to 17
33
Fatigue Strength, MPa 550 to 660
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 51
77
Shear Strength, MPa 550 to 790
340
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
520
Tensile Strength: Yield (Proof), MPa 870 to 1170
200

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1740
1400
Melting Onset (Solidus), °C 1690
1350
Specific Heat Capacity, J/kg-K 500
480
Thermal Conductivity, W/m-K 7.5
12
Thermal Expansion, µm/m-K 7.1
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 5.4
8.0
Embodied Carbon, kg CO2/kg material 32
5.3
Embodied Energy, MJ/kg 490
76
Embodied Water, L/kg 180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
140
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 46 to 69
18
Strength to Weight: Bending, points 38 to 50
18
Thermal Diffusivity, mm2/s 2.8
3.0
Thermal Shock Resistance, points 66 to 100
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0.15 to 0.6
Carbon (C), % 0 to 0.050
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
39.5 to 50.7
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 14 to 16
0
Nickel (Ni), % 0
30 to 35
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.15 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 76 to 81.2
0.15 to 0.6
Residuals, % 0 to 0.4
0