MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. AISI 316 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
8.0 to 55
Fatigue Strength, MPa 550
210 to 430
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
80
Shear Modulus, GPa 40
78
Shear Strength, MPa 610
350 to 690
Tensile Strength: Ultimate (UTS), MPa 1010
520 to 1180
Tensile Strength: Yield (Proof), MPa 940
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
590
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 43
3.9
Embodied Energy, MJ/kg 710
53
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
130 to 1820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
18 to 41
Strength to Weight: Bending, points 50
18 to 31
Thermal Diffusivity, mm2/s 2.9
4.1
Thermal Shock Resistance, points 72
11 to 26

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
62 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0