MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. AISI 316Ti Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while AISI 316Ti stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is AISI 316Ti stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
41
Fatigue Strength, MPa 550
200
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
45
Shear Modulus, GPa 40
82
Shear Strength, MPa 610
400
Tensile Strength: Ultimate (UTS), MPa 1010
580
Tensile Strength: Yield (Proof), MPa 940
230

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
940
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 43
4.0
Embodied Energy, MJ/kg 710
55
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
20
Strength to Weight: Bending, points 50
20
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 72
13

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
61.3 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0 to 0.7
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0