MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. AISI 440A Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
5.0 to 20
Fatigue Strength, MPa 550
270 to 790
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 610
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 1010
730 to 1790
Tensile Strength: Yield (Proof), MPa 940
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
760
Melting Completion (Liquidus), °C 1610
1480
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
23
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 43
2.2
Embodied Energy, MJ/kg 710
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
87 to 120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
26 to 65
Strength to Weight: Bending, points 50
23 to 43
Thermal Diffusivity, mm2/s 2.9
6.2
Thermal Shock Resistance, points 72
26 to 65

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.6 to 0.75
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
78.4 to 83.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0