MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. EN 1.4542 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
5.7 to 20
Fatigue Strength, MPa 550
370 to 640
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 610
550 to 860
Tensile Strength: Ultimate (UTS), MPa 1010
880 to 1470
Tensile Strength: Yield (Proof), MPa 940
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
860
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
16
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
2.7
Embodied Energy, MJ/kg 710
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
31 to 52
Strength to Weight: Bending, points 50
26 to 37
Thermal Diffusivity, mm2/s 2.9
4.3
Thermal Shock Resistance, points 72
29 to 49

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
69.6 to 79
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0