MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. ISO-WD32260 Magnesium

Grade 24 titanium belongs to the titanium alloys classification, while ISO-WD32260 magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is ISO-WD32260 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
46
Elongation at Break, % 11
4.5 to 6.0
Fatigue Strength, MPa 550
150 to 190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
18
Shear Strength, MPa 610
190 to 200
Tensile Strength: Ultimate (UTS), MPa 1010
330 to 340
Tensile Strength: Yield (Proof), MPa 940
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1610
600
Melting Onset (Solidus), °C 1560
520
Specific Heat Capacity, J/kg-K 560
970
Thermal Conductivity, W/m-K 7.1
110
Thermal Expansion, µm/m-K 9.6
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Density, g/cm3 4.5
1.9
Embodied Carbon, kg CO2/kg material 43
23
Embodied Energy, MJ/kg 710
160
Embodied Water, L/kg 310
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
14 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
560 to 700
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
63
Strength to Weight: Axial, points 63
48 to 51
Strength to Weight: Bending, points 50
56 to 58
Thermal Diffusivity, mm2/s 2.9
63
Thermal Shock Resistance, points 72
19 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 0
92.7 to 94.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
4.8 to 6.2
Zirconium (Zr), % 0
0.45 to 0.8
Residuals, % 0
0 to 0.3