MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. Nickel 200

Grade 24 titanium belongs to the titanium alloys classification, while nickel 200 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is nickel 200.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
180
Elongation at Break, % 11
23 to 44
Fatigue Strength, MPa 550
120 to 350
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
70
Shear Strength, MPa 610
300 to 340
Tensile Strength: Ultimate (UTS), MPa 1010
420 to 540
Tensile Strength: Yield (Proof), MPa 940
120 to 370

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
900
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1440
Specific Heat Capacity, J/kg-K 560
450
Thermal Conductivity, W/m-K 7.1
69
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
18

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 43
11
Embodied Energy, MJ/kg 710
150
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
42 to 370
Stiffness to Weight: Axial, points 13
11
Stiffness to Weight: Bending, points 35
21
Strength to Weight: Axial, points 63
13 to 17
Strength to Weight: Bending, points 50
14 to 17
Thermal Diffusivity, mm2/s 2.9
17
Thermal Shock Resistance, points 72
13 to 16

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.4
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0
99 to 100
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0