MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. Nickel 600

Grade 24 titanium belongs to the titanium alloys classification, while nickel 600 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
3.4 to 35
Fatigue Strength, MPa 550
220 to 300
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
75
Shear Strength, MPa 610
430 to 570
Tensile Strength: Ultimate (UTS), MPa 1010
650 to 990
Tensile Strength: Yield (Proof), MPa 940
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1560
1350
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 7.1
14
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.8

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 43
9.0
Embodied Energy, MJ/kg 710
130
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
190 to 1490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 63
21 to 32
Strength to Weight: Bending, points 50
20 to 26
Thermal Diffusivity, mm2/s 2.9
3.6
Thermal Shock Resistance, points 72
19 to 29

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
6.0 to 10
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
72 to 80
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0