MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. SAE-AISI 1137 Steel

Grade 24 titanium belongs to the titanium alloys classification, while SAE-AISI 1137 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is SAE-AISI 1137 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
11 to 17
Fatigue Strength, MPa 550
250 to 400
Poisson's Ratio 0.32
0.29
Reduction in Area, % 28
34 to 39
Shear Modulus, GPa 40
73
Shear Strength, MPa 610
430 to 460
Tensile Strength: Ultimate (UTS), MPa 1010
700 to 760
Tensile Strength: Yield (Proof), MPa 940
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
51
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
12

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
1.4
Embodied Energy, MJ/kg 710
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
360 to 1130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
25 to 27
Strength to Weight: Bending, points 50
22 to 24
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 72
21 to 23

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.32 to 0.39
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
97.8 to 98.3
Manganese (Mn), % 0
1.4 to 1.7
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0