MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. C49300 Brass

Grade 24 titanium belongs to the titanium alloys classification, while C49300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 11
4.5 to 20
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Shear Strength, MPa 610
270 to 290
Tensile Strength: Ultimate (UTS), MPa 1010
430 to 520
Tensile Strength: Yield (Proof), MPa 940
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1610
880
Melting Onset (Solidus), °C 1560
840
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
88
Thermal Expansion, µm/m-K 9.6
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
17

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 43
3.0
Embodied Energy, MJ/kg 710
50
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 63
15 to 18
Strength to Weight: Bending, points 50
16 to 18
Thermal Diffusivity, mm2/s 2.9
29
Thermal Shock Resistance, points 72
14 to 18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
58 to 62
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5