MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. C96200 Copper-nickel

Grade 24 titanium belongs to the titanium alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
23
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
46
Tensile Strength: Ultimate (UTS), MPa 1010
350
Tensile Strength: Yield (Proof), MPa 940
190

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1610
1150
Melting Onset (Solidus), °C 1560
1100
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
45
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 43
3.8
Embodied Energy, MJ/kg 710
58
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
68
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
150
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 63
11
Strength to Weight: Bending, points 50
13
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 72
12

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.1
Copper (Cu), % 0
83.6 to 90
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.5