MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. N10675 Nickel

Grade 24 titanium belongs to the titanium alloys classification, while N10675 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 11
47
Fatigue Strength, MPa 550
350
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
85
Shear Strength, MPa 610
610
Tensile Strength: Ultimate (UTS), MPa 1010
860
Tensile Strength: Yield (Proof), MPa 940
400

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 340
910
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
11
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
9.3
Embodied Carbon, kg CO2/kg material 43
16
Embodied Energy, MJ/kg 710
210
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
330
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 63
26
Strength to Weight: Bending, points 50
22
Thermal Diffusivity, mm2/s 2.9
3.1
Thermal Shock Resistance, points 72
26

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
1.0 to 3.0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 87.5 to 91
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 3.5 to 4.5
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0