MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. S30600 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
45
Fatigue Strength, MPa 550
250
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
56
Shear Modulus, GPa 40
76
Shear Strength, MPa 610
430
Tensile Strength: Ultimate (UTS), MPa 1010
610
Tensile Strength: Yield (Proof), MPa 940
270

Thermal Properties

Latent Heat of Fusion, J/g 410
350
Maximum Temperature: Mechanical, °C 340
950
Melting Completion (Liquidus), °C 1610
1380
Melting Onset (Solidus), °C 1560
1330
Specific Heat Capacity, J/kg-K 560
490
Thermal Conductivity, W/m-K 7.1
14
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 43
3.6
Embodied Energy, MJ/kg 710
51
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
22
Strength to Weight: Bending, points 50
21
Thermal Diffusivity, mm2/s 2.9
3.7
Thermal Shock Resistance, points 72
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
58.9 to 65.3
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
14 to 15.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0