MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. S32615 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while S32615 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
28
Fatigue Strength, MPa 550
180
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
46
Shear Modulus, GPa 40
75
Shear Strength, MPa 610
400
Tensile Strength: Ultimate (UTS), MPa 1010
620
Tensile Strength: Yield (Proof), MPa 940
250

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 340
990
Melting Completion (Liquidus), °C 1610
1350
Melting Onset (Solidus), °C 1560
1310
Specific Heat Capacity, J/kg-K 560
500
Thermal Expansion, µm/m-K 9.6
15

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 43
4.4
Embodied Energy, MJ/kg 710
63
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
23
Strength to Weight: Bending, points 50
21
Thermal Shock Resistance, points 72
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
16.5 to 19.5
Copper (Cu), % 0
1.5 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
46.4 to 57.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
4.8 to 6.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0