MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. S35500 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
14
Fatigue Strength, MPa 550
690 to 730
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 610
810 to 910
Tensile Strength: Ultimate (UTS), MPa 1010
1330 to 1490
Tensile Strength: Yield (Proof), MPa 940
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
870
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
16
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
3.5
Embodied Energy, MJ/kg 710
47
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
3610 to 4100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
47 to 53
Strength to Weight: Bending, points 50
34 to 37
Thermal Diffusivity, mm2/s 2.9
4.4
Thermal Shock Resistance, points 72
44 to 49

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
73.2 to 77.7
Manganese (Mn), % 0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0 to 0.050
0.070 to 0.13
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0