MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. S36200 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
3.4 to 4.6
Fatigue Strength, MPa 550
450 to 570
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 610
680 to 810
Tensile Strength: Ultimate (UTS), MPa 1010
1180 to 1410
Tensile Strength: Yield (Proof), MPa 940
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
820
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
16
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
2.8
Embodied Energy, MJ/kg 710
40
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
2380 to 3930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
42 to 50
Strength to Weight: Bending, points 50
32 to 36
Thermal Diffusivity, mm2/s 2.9
4.3
Thermal Shock Resistance, points 72
40 to 48

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.1
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
75.4 to 79.5
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0
6.5 to 7.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0.6 to 0.9
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0