MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. S82031 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
39
Fatigue Strength, MPa 550
490
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 610
540
Tensile Strength: Ultimate (UTS), MPa 1010
780
Tensile Strength: Yield (Proof), MPa 940
570

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
980
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 43
2.8
Embodied Energy, MJ/kg 710
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
280
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
28
Strength to Weight: Bending, points 50
24
Thermal Diffusivity, mm2/s 2.9
3.9
Thermal Shock Resistance, points 72
22

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
68 to 78.3
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0 to 0.050
0.14 to 0.24
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0