MakeItFrom.com
Menu (ESC)

Grade 26 Titanium vs. CR024A Copper

Grade 26 titanium belongs to the titanium alloys classification, while CR024A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 26 titanium and the bottom bar is CR024A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 23
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 390
230
Tensile Strength: Yield (Proof), MPa 350
140

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1610
1040
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
370
Thermal Expansion, µm/m-K 9.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
100
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 33
2.6
Embodied Energy, MJ/kg 530
41
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
31
Resilience: Unit (Modulus of Resilience), kJ/m3 580
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 24
7.1
Strength to Weight: Bending, points 26
9.3
Thermal Diffusivity, mm2/s 8.6
110
Thermal Shock Resistance, points 28
8.1

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.9 to 99.985
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0.015 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silver (Ag), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 99.92
0
Residuals, % 0 to 0.4
0