MakeItFrom.com
Menu (ESC)

Grade 27 Titanium vs. C11100 Copper

Grade 27 titanium belongs to the titanium alloys classification, while C11100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 27 titanium and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 27
1.5
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
44
Shear Strength, MPa 180
230
Tensile Strength: Ultimate (UTS), MPa 270
460
Tensile Strength: Yield (Proof), MPa 230
420

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1070
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
390
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
100
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 33
2.6
Embodied Energy, MJ/kg 530
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 240
750
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 17
14
Strength to Weight: Bending, points 21
15
Thermal Diffusivity, mm2/s 8.8
110
Thermal Shock Resistance, points 21
16

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.9 to 100
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Ruthenium (Ru), % 0.080 to 0.14
0
Titanium (Ti), % 99 to 99.92
0
Residuals, % 0
0 to 0.1