MakeItFrom.com
Menu (ESC)

Grade 27 Titanium vs. C14300 Copper

Grade 27 titanium belongs to the titanium alloys classification, while C14300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 27 titanium and the bottom bar is C14300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 27
2.0 to 42
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 180
150 to 260
Tensile Strength: Ultimate (UTS), MPa 270
220 to 460
Tensile Strength: Yield (Proof), MPa 230
76 to 430

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1050
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
380
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
96
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
96

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 33
2.6
Embodied Energy, MJ/kg 530
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
9.0 to 72
Resilience: Unit (Modulus of Resilience), kJ/m3 240
25 to 810
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 17
6.8 to 14
Strength to Weight: Bending, points 21
9.1 to 15
Thermal Diffusivity, mm2/s 8.8
110
Thermal Shock Resistance, points 21
7.8 to 16

Alloy Composition

Cadmium (Cd), % 0
0.050 to 0.15
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.9 to 99.95
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Ruthenium (Ru), % 0.080 to 0.14
0
Titanium (Ti), % 99 to 99.92
0
Residuals, % 0 to 0.4
0