MakeItFrom.com
Menu (ESC)

Grade 27 Titanium vs. R30016 Cobalt

Grade 27 titanium belongs to the titanium alloys classification, while R30016 cobalt belongs to the cobalt alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 27 titanium and the bottom bar is R30016 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 27
8.4
Fatigue Strength, MPa 170
290
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
8.0
Shear Modulus, GPa 41
85
Tensile Strength: Ultimate (UTS), MPa 270
1010
Tensile Strength: Yield (Proof), MPa 230
580

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Melting Completion (Liquidus), °C 1660
1360
Melting Onset (Solidus), °C 1610
1270
Specific Heat Capacity, J/kg-K 540
450
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 33
7.7
Embodied Energy, MJ/kg 530
110
Embodied Water, L/kg 320
500

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
72
Resilience: Unit (Modulus of Resilience), kJ/m3 240
770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 17
33
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 8.8
3.9
Thermal Shock Resistance, points 21
24

Alloy Composition

Carbon (C), % 0 to 0.080
0.9 to 1.4
Chromium (Cr), % 0
28 to 32
Cobalt (Co), % 0
49.6 to 66.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 3.0
Manganese (Mn), % 0
0.5 to 2.0
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 3.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.2 to 2.0
Titanium (Ti), % 99 to 99.92
0
Tungsten (W), % 0
3.5 to 5.5
Residuals, % 0 to 0.4
0