MakeItFrom.com
Menu (ESC)

Grade 27 Titanium vs. S43932 Stainless Steel

Grade 27 titanium belongs to the titanium alloys classification, while S43932 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 27 titanium and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
25
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 180
300
Tensile Strength: Ultimate (UTS), MPa 270
460
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
23
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
40
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
96
Resilience: Unit (Modulus of Resilience), kJ/m3 240
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 8.8
6.3
Thermal Shock Resistance, points 21
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
76.7 to 83
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99 to 99.92
0.2 to 0.75
Residuals, % 0 to 0.4
0