MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. 1100 Aluminum

Grade 28 titanium belongs to the titanium alloys classification, while 1100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is 1100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 11 to 17
1.1 to 32
Fatigue Strength, MPa 330 to 480
32 to 71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 420 to 590
54 to 95
Tensile Strength: Ultimate (UTS), MPa 690 to 980
86 to 170
Tensile Strength: Yield (Proof), MPa 540 to 810
28 to 150

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
180
Melting Completion (Liquidus), °C 1640
660
Melting Onset (Solidus), °C 1590
640
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
220
Thermal Expansion, µm/m-K 9.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
59
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
190

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.0
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 37
8.2
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 370
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
0.76 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
5.7 to 170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 43 to 61
8.7 to 17
Strength to Weight: Bending, points 39 to 49
16 to 25
Thermal Diffusivity, mm2/s 3.4
90
Thermal Shock Resistance, points 47 to 66
3.7 to 7.4

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
99 to 99.95
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0.050 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants