MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. 5026 Aluminum

Grade 28 titanium belongs to the titanium alloys classification, while 5026 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11 to 17
5.1 to 11
Fatigue Strength, MPa 330 to 480
94 to 140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 420 to 590
150 to 180
Tensile Strength: Ultimate (UTS), MPa 690 to 980
260 to 320
Tensile Strength: Yield (Proof), MPa 540 to 810
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
210
Melting Completion (Liquidus), °C 1640
650
Melting Onset (Solidus), °C 1590
510
Specific Heat Capacity, J/kg-K 550
890
Thermal Conductivity, W/m-K 8.3
130
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
99

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 37
8.9
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 370
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
100 to 440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 43 to 61
26 to 32
Strength to Weight: Bending, points 39 to 49
33 to 37
Thermal Diffusivity, mm2/s 3.4
52
Thermal Shock Resistance, points 47 to 66
11 to 14

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
88.2 to 94.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0.1 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0.2 to 1.0
Magnesium (Mg), % 0
3.9 to 4.9
Manganese (Mn), % 0
0.6 to 1.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.55 to 1.4
Titanium (Ti), % 92.4 to 95.4
0 to 0.2
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants