MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. 6063A Aluminum

Grade 28 titanium belongs to the titanium alloys classification, while 6063A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is 6063A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11 to 17
6.7 to 18
Fatigue Strength, MPa 330 to 480
53 to 80
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 420 to 590
78 to 150
Tensile Strength: Ultimate (UTS), MPa 690 to 980
130 to 260
Tensile Strength: Yield (Proof), MPa 540 to 810
55 to 200

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
160
Melting Completion (Liquidus), °C 1640
640
Melting Onset (Solidus), °C 1590
620
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
200
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
49 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 37
8.3
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 370
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
13 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
22 to 280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 43 to 61
13 to 26
Strength to Weight: Bending, points 39 to 49
21 to 33
Thermal Diffusivity, mm2/s 3.4
83
Thermal Shock Resistance, points 47 to 66
5.6 to 11

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
97.5 to 99
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0.15 to 0.35
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0
0 to 0.15
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.3 to 0.6
Titanium (Ti), % 92.4 to 95.4
0 to 0.1
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants