MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. 8011A Aluminum

Grade 28 titanium belongs to the titanium alloys classification, while 8011A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 11 to 17
1.7 to 28
Fatigue Strength, MPa 330 to 480
33 to 76
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 690 to 980
100 to 180
Tensile Strength: Yield (Proof), MPa 540 to 810
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
650
Melting Onset (Solidus), °C 1590
630
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
210
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
180

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.0
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 37
8.2
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 370
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
8.2 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 43 to 61
11 to 18
Strength to Weight: Bending, points 39 to 49
18 to 26
Thermal Diffusivity, mm2/s 3.4
86
Thermal Shock Resistance, points 47 to 66
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
97.5 to 99.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0.5 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 92.4 to 95.4
0 to 0.050
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants