MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. AISI 202 Stainless Steel

Grade 28 titanium belongs to the titanium alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
14 to 45
Fatigue Strength, MPa 330 to 480
290 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 420 to 590
490 to 590
Tensile Strength: Ultimate (UTS), MPa 690 to 980
700 to 980
Tensile Strength: Yield (Proof), MPa 540 to 810
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
910
Melting Completion (Liquidus), °C 1640
1400
Melting Onset (Solidus), °C 1590
1360
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
15
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 37
2.8
Embodied Energy, MJ/kg 600
40
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
250 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
25 to 35
Strength to Weight: Bending, points 39 to 49
23 to 29
Thermal Diffusivity, mm2/s 3.4
4.0
Thermal Shock Resistance, points 47 to 66
15 to 21

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
63.5 to 71.5
Manganese (Mn), % 0
7.5 to 10
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0 to 0.030
0 to 0.25
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.060
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants