MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. EN 1.4415 Stainless Steel

Grade 28 titanium belongs to the titanium alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
17 to 20
Fatigue Strength, MPa 330 to 480
470 to 510
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 420 to 590
520 to 570
Tensile Strength: Ultimate (UTS), MPa 690 to 980
830 to 930
Tensile Strength: Yield (Proof), MPa 540 to 810
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
790
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
19
Thermal Expansion, µm/m-K 9.9
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 37
3.6
Embodied Energy, MJ/kg 600
51
Embodied Water, L/kg 370
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
1350 to 1790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
29 to 33
Strength to Weight: Bending, points 39 to 49
25 to 27
Thermal Diffusivity, mm2/s 3.4
5.1
Thermal Shock Resistance, points 47 to 66
30 to 34

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
75.9 to 82.4
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.4 to 95.4
0 to 0.010
Vanadium (V), % 2.0 to 3.0
0.1 to 0.5
Residuals, % 0 to 0.4
0

Comparable Variants