MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. EN 1.6570 Steel

Grade 28 titanium belongs to the titanium alloys classification, while EN 1.6570 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is EN 1.6570 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
11 to 17
Fatigue Strength, MPa 330 to 480
500 to 660
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 690 to 980
910 to 1130
Tensile Strength: Yield (Proof), MPa 540 to 810
760 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
440
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
40
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.9
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 37
1.7
Embodied Energy, MJ/kg 600
23
Embodied Water, L/kg 370
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
1520 to 3010
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
32 to 40
Strength to Weight: Bending, points 39 to 49
27 to 31
Thermal Diffusivity, mm2/s 3.4
11
Thermal Shock Resistance, points 47 to 66
27 to 33

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.28 to 0.35
Chromium (Cr), % 0
1.0 to 1.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
94 to 96.2
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0
1.6 to 2.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants