MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. Nickel 890

Grade 28 titanium belongs to the titanium alloys classification, while nickel 890 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
39
Fatigue Strength, MPa 330 to 480
180
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 420 to 590
400
Tensile Strength: Ultimate (UTS), MPa 690 to 980
590
Tensile Strength: Yield (Proof), MPa 540 to 810
230

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 330
1000
Melting Completion (Liquidus), °C 1640
1390
Melting Onset (Solidus), °C 1590
1340
Specific Heat Capacity, J/kg-K 550
480
Thermal Expansion, µm/m-K 9.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
47
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 37
8.2
Embodied Energy, MJ/kg 600
120
Embodied Water, L/kg 370
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
20
Strength to Weight: Bending, points 39 to 49
19
Thermal Shock Resistance, points 47 to 66
15

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0.050 to 0.6
Carbon (C), % 0 to 0.080
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
17.3 to 33.9
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 92.4 to 95.4
0.15 to 0.6
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0