MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. SAE-AISI 1137 Steel

Grade 28 titanium belongs to the titanium alloys classification, while SAE-AISI 1137 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is SAE-AISI 1137 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
11 to 17
Fatigue Strength, MPa 330 to 480
250 to 400
Poisson's Ratio 0.32
0.29
Reduction in Area, % 22
34 to 39
Shear Modulus, GPa 40
73
Shear Strength, MPa 420 to 590
430 to 460
Tensile Strength: Ultimate (UTS), MPa 690 to 980
700 to 760
Tensile Strength: Yield (Proof), MPa 540 to 810
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
51
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.9
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 37
1.4
Embodied Energy, MJ/kg 600
19
Embodied Water, L/kg 370
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
360 to 1130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
25 to 27
Strength to Weight: Bending, points 39 to 49
22 to 24
Thermal Diffusivity, mm2/s 3.4
14
Thermal Shock Resistance, points 47 to 66
21 to 23

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.32 to 0.39
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
97.8 to 98.3
Manganese (Mn), % 0
1.4 to 1.7
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0