Grade 28 Titanium vs. SAE-AISI 4620 Steel
Grade 28 titanium belongs to the titanium alloys classification, while SAE-AISI 4620 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is grade 28 titanium and the bottom bar is SAE-AISI 4620 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
190 |
Elongation at Break, % | 11 to 17 | |
16 to 27 |
Fatigue Strength, MPa | 330 to 480 | |
260 to 360 |
Poisson's Ratio | 0.32 | |
0.29 |
Shear Modulus, GPa | 40 | |
73 |
Shear Strength, MPa | 420 to 590 | |
320 to 420 |
Tensile Strength: Ultimate (UTS), MPa | 690 to 980 | |
490 to 680 |
Tensile Strength: Yield (Proof), MPa | 540 to 810 | |
350 to 550 |
Thermal Properties
Latent Heat of Fusion, J/g | 410 | |
250 |
Maximum Temperature: Mechanical, °C | 330 | |
410 |
Melting Completion (Liquidus), °C | 1640 | |
1460 |
Melting Onset (Solidus), °C | 1590 | |
1420 |
Specific Heat Capacity, J/kg-K | 550 | |
470 |
Thermal Conductivity, W/m-K | 8.3 | |
47 |
Thermal Expansion, µm/m-K | 9.9 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.3 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 36 | |
3.2 |
Density, g/cm3 | 4.5 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 37 | |
1.6 |
Embodied Energy, MJ/kg | 600 | |
22 |
Embodied Water, L/kg | 370 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 87 to 110 | |
100 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1370 to 3100 | |
330 to 800 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
24 |
Strength to Weight: Axial, points | 43 to 61 | |
17 to 24 |
Strength to Weight: Bending, points | 39 to 49 | |
18 to 22 |
Thermal Diffusivity, mm2/s | 3.4 | |
13 |
Thermal Shock Resistance, points | 47 to 66 | |
15 to 20 |
Alloy Composition
Aluminum (Al), % | 2.5 to 3.5 | |
0 |
Carbon (C), % | 0 to 0.080 | |
0.17 to 0.22 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.25 | |
96.4 to 97.4 |
Manganese (Mn), % | 0 | |
0.45 to 0.65 |
Molybdenum (Mo), % | 0 | |
0.2 to 0.3 |
Nickel (Ni), % | 0 | |
1.7 to 2.0 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.15 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.035 |
Ruthenium (Ru), % | 0.080 to 0.14 | |
0 |
Silicon (Si), % | 0 | |
0.15 to 0.35 |
Sulfur (S), % | 0 | |
0 to 0.040 |
Titanium (Ti), % | 92.4 to 95.4 | |
0 |
Vanadium (V), % | 2.0 to 3.0 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |