MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. Sintered 2014 Aluminum

Grade 28 titanium belongs to the titanium alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11 to 17
0.5 to 3.0
Fatigue Strength, MPa 330 to 480
52 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 690 to 980
140 to 290
Tensile Strength: Yield (Proof), MPa 540 to 810
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
650
Melting Onset (Solidus), °C 1590
560
Specific Heat Capacity, J/kg-K 550
880
Thermal Conductivity, W/m-K 8.3
130
Thermal Expansion, µm/m-K 9.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 4.5
2.9
Embodied Carbon, kg CO2/kg material 37
8.0
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 370
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
68 to 560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
47
Strength to Weight: Axial, points 43 to 61
13 to 27
Strength to Weight: Bending, points 39 to 49
20 to 33
Thermal Diffusivity, mm2/s 3.4
51
Thermal Shock Resistance, points 47 to 66
6.2 to 13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
91.5 to 96.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
3.5 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Magnesium (Mg), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.2
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0
0 to 1.5