MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. C14181 Copper

Grade 28 titanium belongs to the titanium alloys classification, while C14181 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is C14181 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 17
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 690 to 980
210
Tensile Strength: Yield (Proof), MPa 540 to 810
130

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 330
200
Melting Completion (Liquidus), °C 1640
1080
Melting Onset (Solidus), °C 1590
1080
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.3
380
Thermal Expansion, µm/m-K 9.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 37
2.6
Embodied Energy, MJ/kg 600
41
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
28
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
69
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 43 to 61
6.5
Strength to Weight: Bending, points 39 to 49
8.8
Thermal Diffusivity, mm2/s 3.4
110
Thermal Shock Resistance, points 47 to 66
7.4

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Cadmium (Cd), % 0
0 to 0.0020
Carbon (C), % 0 to 0.080
0 to 0.0050
Copper (Cu), % 0
99.9 to 100
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Lead (Pb), % 0
0 to 0.0020
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.0020
Ruthenium (Ru), % 0.080 to 0.14
0
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.0020
Residuals, % 0 to 0.4
0