MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. C16200 Copper

Grade 28 titanium belongs to the titanium alloys classification, while C16200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 17
2.0 to 56
Fatigue Strength, MPa 330 to 480
100 to 210
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 420 to 590
190 to 390
Tensile Strength: Ultimate (UTS), MPa 690 to 980
240 to 550
Tensile Strength: Yield (Proof), MPa 540 to 810
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 330
370
Melting Completion (Liquidus), °C 1640
1080
Melting Onset (Solidus), °C 1590
1030
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 8.3
360
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
90

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 37
2.6
Embodied Energy, MJ/kg 600
41
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
10 to 970
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 43 to 61
7.4 to 17
Strength to Weight: Bending, points 39 to 49
9.6 to 17
Thermal Diffusivity, mm2/s 3.4
100
Thermal Shock Resistance, points 47 to 66
8.7 to 20

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
98.6 to 99.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0