MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. C87610 Bronze

Grade 28 titanium belongs to the titanium alloys classification, while C87610 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
22
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 690 to 980
350
Tensile Strength: Yield (Proof), MPa 540 to 810
140

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 330
190
Melting Completion (Liquidus), °C 1640
970
Melting Onset (Solidus), °C 1590
820
Specific Heat Capacity, J/kg-K 550
410
Thermal Conductivity, W/m-K 8.3
28
Thermal Expansion, µm/m-K 9.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 37
2.6
Embodied Energy, MJ/kg 600
43
Embodied Water, L/kg 370
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
62
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
88
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 61
11
Strength to Weight: Bending, points 39 to 49
13
Thermal Diffusivity, mm2/s 3.4
8.1
Thermal Shock Resistance, points 47 to 66
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
90 to 94
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
0 to 0.25
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
3.0 to 5.0
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.5