MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. C90900 Bronze

Grade 28 titanium belongs to the titanium alloys classification, while C90900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 690 to 980
280
Tensile Strength: Yield (Proof), MPa 540 to 810
140

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 330
160
Melting Completion (Liquidus), °C 1640
980
Melting Onset (Solidus), °C 1590
820
Specific Heat Capacity, J/kg-K 550
360
Thermal Conductivity, W/m-K 8.3
65
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 37
3.9
Embodied Energy, MJ/kg 600
64
Embodied Water, L/kg 370
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
35
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
89
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 43 to 61
8.8
Strength to Weight: Bending, points 39 to 49
11
Thermal Diffusivity, mm2/s 3.4
21
Thermal Shock Resistance, points 47 to 66
10

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.050
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
12 to 14
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6