MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. C93700 Bronze

Grade 28 titanium belongs to the titanium alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
99
Elongation at Break, % 11 to 17
20
Fatigue Strength, MPa 330 to 480
90
Poisson's Ratio 0.32
0.35
Shear Modulus, GPa 40
37
Tensile Strength: Ultimate (UTS), MPa 690 to 980
240
Tensile Strength: Yield (Proof), MPa 540 to 810
130

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 330
140
Melting Completion (Liquidus), °C 1640
930
Melting Onset (Solidus), °C 1590
760
Specific Heat Capacity, J/kg-K 550
350
Thermal Conductivity, W/m-K 8.3
47
Thermal Expansion, µm/m-K 9.9
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 37
3.5
Embodied Energy, MJ/kg 600
57
Embodied Water, L/kg 370
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
79
Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 35
17
Strength to Weight: Axial, points 43 to 61
7.5
Strength to Weight: Bending, points 39 to 49
9.6
Thermal Diffusivity, mm2/s 3.4
15
Thermal Shock Resistance, points 47 to 66
9.4

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
78 to 82
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 1.5
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0