MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. C97800 Nickel Silver

Grade 28 titanium belongs to the titanium alloys classification, while C97800 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is C97800 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
130
Elongation at Break, % 11 to 17
10
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
48
Tensile Strength: Ultimate (UTS), MPa 690 to 980
370
Tensile Strength: Yield (Proof), MPa 540 to 810
170

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 330
230
Melting Completion (Liquidus), °C 1640
1180
Melting Onset (Solidus), °C 1590
1140
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.3
25
Thermal Expansion, µm/m-K 9.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
40
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 37
5.1
Embodied Energy, MJ/kg 600
76
Embodied Water, L/kg 370
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
120
Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 61
12
Strength to Weight: Bending, points 39 to 49
13
Thermal Diffusivity, mm2/s 3.4
7.3
Thermal Shock Resistance, points 47 to 66
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
64 to 67
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.5
Lead (Pb), % 0
1.0 to 2.5
Nickel (Ni), % 0
24 to 27
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.050
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 5.5
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
1.0 to 4.0
Residuals, % 0
0 to 0.4