MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. N06219 Nickel

Grade 28 titanium belongs to the titanium alloys classification, while N06219 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
48
Fatigue Strength, MPa 330 to 480
270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
79
Shear Strength, MPa 420 to 590
520
Tensile Strength: Ultimate (UTS), MPa 690 to 980
730
Tensile Strength: Yield (Proof), MPa 540 to 810
300

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 330
980
Melting Completion (Liquidus), °C 1640
1430
Melting Onset (Solidus), °C 1590
1380
Specific Heat Capacity, J/kg-K 550
450
Thermal Conductivity, W/m-K 8.3
10
Thermal Expansion, µm/m-K 9.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
60
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 37
11
Embodied Energy, MJ/kg 600
140
Embodied Water, L/kg 370
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
280
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 43 to 61
24
Strength to Weight: Bending, points 39 to 49
21
Thermal Diffusivity, mm2/s 3.4
2.7
Thermal Shock Resistance, points 47 to 66
21

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
2.0 to 4.0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0
60.8 to 72.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 92.4 to 95.4
0 to 0.5
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0