MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. N08320 Stainless Steel

Grade 28 titanium belongs to the titanium alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
40
Fatigue Strength, MPa 330 to 480
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 420 to 590
400
Tensile Strength: Ultimate (UTS), MPa 690 to 980
580
Tensile Strength: Yield (Proof), MPa 540 to 810
220

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1400
Melting Onset (Solidus), °C 1590
1350
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.3
12
Thermal Expansion, µm/m-K 9.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 37
4.9
Embodied Energy, MJ/kg 600
69
Embodied Water, L/kg 370
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
20
Strength to Weight: Bending, points 39 to 49
20
Thermal Diffusivity, mm2/s 3.4
3.3
Thermal Shock Resistance, points 47 to 66
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
21 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
40.4 to 50
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 0
25 to 27
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0